Skip to main navigation menu Skip to main content Skip to site footer

Towards Clear, Simple, and Inclusive Legal Language: Exploring Generative Artificial Intelligence (GAI) Models as Content Rephrasing Assistants in Multilingual Settings

Abstract

This study explores the potential for GAI language models and Natural Language Processing (NLP) tools to be used as writing aids in the transformation of expert content into clear, simple and inclusive language. In particular, we focus on the feasibility of fully automating the reformulation of legal texts, and the challenges of setting standards for automatically generating content in multilingual settings. While automatic assistants can already produce effective summaries and simplified versions of complex legal texts, we suggest that they lack the functional awareness and metalinguistic reflexivity that are particular to human review and revision. We illustrate this by examining a series of authentic examples. First, we look at tools like ChatGPT which can be configured to summarise complex legal documents and generate texts aligned using the guidelines for Plain Language (PL) and Easy-to-Read (E2R). We give examples of linguistic features, outputs from NLP models, and GAI-generated content evaluation. Our initial observations suggest that while automatic assistants can produce greatly simplified texts, they are unable to take into account legal implications and contextual reasoning. Then we look at the issue of prescriptive guidelines in the light of the new paradigm of content management. Comparing examples of official discourse and their equivalents ‘translated’ into E2R, we find that the reformulations involved reflect the very different functional requirements of such radically simplified texts. This observation leads us to stress the importance of human oversight in auto-generated content, as well as the need for guidelines, integrated revision tools, transparency, user training, and continuous monitoring.

Cite as: Zimina-Poirot et al., JLL 14 (2025), 143–173, DOI: 10.14762/jll.2025.143

Keywords

computer-mediated communication (CMC), easy-to-read (E2R), generative artificial intelligence (GAI), legal discourse, natural language processing (NLP), plain language (PL), recontextualisation, training for language professionals

PDF

References

  1. Adam, Jean-Michel (2001). Types de textes ou genres de discours? Comment classer les textes qui di-sent de et comment faire? Langages, 35(141), 10–27. DOI: 10.3406/lgge.2001.872.
  2. Aitchison, Jean (1991). Language Change: Progress or Decay Cambridge Approaches to Linguistics. Cambridge : Univ. Press.
  3. Baumert, Renaud; Geslin, Albane; Roussel, Stéphanie; Schott, Stéphane & Institut francophone pour la justice et la démocratie – Institut Louis Joinet (Eds.) (2021). Colloques & Essais. Langues et Langages Ju-ridiques: Traduction et Traductologie, Didactique et Pédagogie. Institut francophone pour la justice et la démocratie.
  4. Bock, Bettina (2018). Die Menschenrechte in 'Leichter Sprache'. Vergleich der Modifikationsprinzipien von zwei Fassungen. Popularization and Knowledge Mediation in the Law/Popularisierung Und Wissensvermittlung Im Recht. Wien, LIT, 169–200.
  5. Bouyé, Manon (2022). Le Style Clair en Droit : Étude Comparative du Discours Juridique en Anglais et en Français, Avant et Après Simplification. Le Plain Language Dans la Communication Juridique Avec le Grand Public. PhD Thesis, Université Paris Cité : Paris.
  6. Bouyé, Manon & Gledhill, Christopher (2024). The phraseology of legal French and legal popularisation in France and Canada: A corpus-assisted analysis. Languages, 9(3), 107. DOI: 10.3390/languages9030107.
  7. Cameron, Deborah (2012). Verbal Hygiene. Routledge. DOI: 10.4324/9780203123898.
  8. Chang, Tyler A. & Bergen, Benjamin K. (2024). Language model behavior: A comprehensive survey. Computational Linguistics, 50(1), 293–350. DOI: 10.1162/coli_a_00492.
  9. Crossley, Scott A.; Louwerse, Max M.; McCarthy, Philip M. & McNamara, Danielle S. (2007). A linguistic analysis of simplified and authentic texts. The Modern Language Journal, 91(1), 15–30. DOI: 10.1111/j.1540-4781.2007.00507.x.
  10. Duprat, Noah (2024). La Non-Binarité Dans la Langue Française. University Paris Cité : Paris.
  11. Edler, Cordula (2020). Handbook for Peer-Researchers, Researchers, and Developers. Easy Reading.
  12. European Commission (2021). Information for All: European Standards for Making Information Easy to Read And Understand. Available at inclusion-europe.eu/easy-to-read-standards-guidelines/ (accessed 07 May 2025).
  13. European Commission, Directorate General for Translation (2012). How to Write Clearly. Publications Office. DOI: 10.2782/54318.
  14. European Disability Forum. EDF Manifesto on the European Elections 2024: “Building an Inclusive Future for Persons with Disabilities in the EU”. Available at edf-feph.org/publications/eppd-manifesto-2023 (ac-cessed 07 May 2025).
  15. European Disability Forum. What We Ask People Who Make Decisions in Europe to Do for People With Disa-bilities. Our Manifesto on the European Elections. Easy-to-Read Version. Available at edf-feph.org/content/uploads/2000/05/EDF-Manifesto-on-the-European-Elections-2024-Accessible-Word.docx (accessed 07 May 2025).
  16. Froeliger, Nicolas; Gledhill, Christopher & Zimina-Poirot, Maria (2023). Intégrer des plateformes de traduction automatique neuronale dans l’enseignement de la traduction spécialisée. Froeliger, Larsonneure & Sofo (Eds.), Human Translation and Natural Language Processing Towards a New Consensus? (p. 19011). Fondazione Università Ca’ Foscari. DOI: 10.30687/978-88-6969-762-3/009.
  17. Froeliger, Nicolas; Morin-Hernández, Katell; Le Floch, Vasilica; Loock, Rudy; Noonan, Will & Volclair, Alain (2024). «Non, l’intelligence artificielle ne remplacera pas les traducteurs et les traductrices !». Le Monde. Available at lemonde.fr/idees/article/2024/09/09/non-l-intelligence-artificielle-ne-remplacera-pas-les-traducteurs-et-les-traductrices_6308656_3232.html (accessed 07 May 2025).
  18. Gailey, Amanda (2012). Cold war legacies in digital editing.Textual Cultures: Texts, Contexts, Interpreta-tion, 7, 17–5. Available at https://api.semanticscholar.org/CorpusID:144855450 (accessed 07 May 2025).
  19. Gangloff, Doriane (2015). Le langage facile à lire et à comprendre. Revue Suisse De Pédagogie Spécialisée, 4, 44–50.
  20. Gledhill, Christopher; Martikainen, Hanna; Mestivier, Alexandra & Zimina, Maria (2019). Towards a linguistic definition of ‘simplified medical English’: Applying textometric analysis to cochrane medi-cal abstracts and their plain language versions. LCM – La Collana / The Series, 9788879169196, 91–114. DOI: 10.7359/919-2019-gled.
  21. Gledhill, Christopher & Zimina-Poirot, Maria (2019). The impact of machine translation on a masters course in web translation: From disrupted practice to a qualitative translation/revision workflow. Translating and the Computer, 41.
  22. Gledhill, Christopher & Zimina-Poirot, Maria (2022). Human-machine interaction: How to integrate plain language rules in the revision cycles of neural machine translation output. De Europa: European and Global Studies Journal, Special Issue – 2022(1), 149–172. Available at u-paris.hal.science/hal-04050523 (accessed 07 May 2025).
  23. Grigely, Joseph (1995). Textualterity: Art, Theory, and Textual Criticism. University of Michigan Press.
  24. Halliday; Kirkwood, Michael Alexander & Matthiessen, Christian M. I. M. (2014). An Introduction to Functional Grammar (4th ed.). Arnold Oxford University Press.
  25. Hansen-Schirra, Silvia; Bisang, Walter; Nagels, Arne; Gutermuth, Silke; Fuchs, Julia; Borghardt, Liv; Deilen, Silvan; Gros, Anne-Kathrin; Schiffl, Laura & Sommer, Johanna (2020). Intralingual transla-tion into easy language–or how to reduce cognitive processing costs. Hansen-Schirra & Maaß (Eds.), Easy Language Research: Text and User Perspectives (pp. 197–225). Berlin: Frank & Timme.
  26. Hansen-Schirra, Silvia & Maaß, Christiane (Eds.) (2020). Easy – Plain – Accessible. Easy Language Re-search: Text and User Perspectives. Frank & Timme.
  27. Helm, Paula; Bella, Gábor; Koch, Gertraud & Giunchiglia, Fausto (2024). Diversity and language tech-nology: How language modeling bias causes epistemic injustice. Ethics and Information Technology, 26(1), 8. DOI: 10.1007/s10676-023-09742-6.
  28. Inclusion Europe (2021). Inclusion Europe. Annual Report 2021. Available at inclusion-europe.eu/annual-report-2021 (accessed 07 May 2025).
  29. Kantharaja, K. P.; Srinivasalu, M.; Rajashekara, M. N.; Vishvanath, Yankappa & Sanjeev, P. (2024). Exploring the impact of artificial intelligence on the future of English language editing and proof-reading. Educational Administration: Theory and Practice, 30(1), 669–681. DOI: 10.53555/kuey.v30i1.5226.
  30. Kilichev, Bayramali; Abbasova, Nargiza; Gafurova, Nodira; Dadabayeva, Shirinkhon; Nurmatova, Mu-niskhon & Fazildinova, Sevara (2024). A development of personalized content creation technology model using NLP and AI integrated system. 4th International Conference on Advance Computing and In-novative Technologies in Engineering (ICACITE) (pp. 595–600). DOI: 10.1109/ICACITE60783.2024.10617129.
  31. Kline, Emily A. (2023). Stolen voices: A linguistic approach to understanding implicit gender bias in the legal profession. UCLA Women’s Law Journal, 30(1). DOI: 10.5070/L330161545.
  32. Krieg-Planque, Alice (2020). Quand la communication publique travaille son expression: Les adminis-trations à la recherche d’un «langage clair». Politiques De Communication, 14(1), 3–34. DOI: 10.3917/pdc.014.0003.
  33. Kshetri, Nir (2024). Economics of artificial intelligence governance. Computer, 57(4), 113–118. DOI: 10.1109/MC.2024.3357951.
  34. Kuhn, Tobias (2014). A survey and classification of controlled natural languages. Computational Linguis-tics, 40(1), 121–170. DOI: 10.1162/COLI_a_00168.
  35. Linell, Per (1998). Discourse across boundaries: On recontextualizations and the blending of voices in Professional discourse. Text – Interdisciplinary Journal for the Study of Discourse, 18(2). DOI: 10.1515/text.1.1998.18.2.143.
  36. Lionbridge (2023). The Lionbridge 2023 Machine Translation Report. Available at lion-bridge.com/whitepaper/the-lionbridge-2023-machine-translation-report (accessed 07 May 2025).
  37. Liu, Jiaxi (2024). ChatGPT: Perspectives from human–computer interaction and psychology. Frontiers in Artificial Intelligence, 7, 1418869. DOI: 10.3389/frai.2024.1418869.
  38. Lo Bianco, Joseph (2010). The importance of language policies and multilingualism for cultural diversity. International Social Science Journal, 61(199), 37–67. DOI: 10.1111/j.1468-2451.2010.01747.x.
  39. Maaß, Christiane (2020). Easy Language – Plain Language – Easy Language Plus: Balancing Comprehensibility and Acceptability. Frank & Timme. Available at library.oapen.org/handle/20.500.12657/42089 (ac-cessed 07 May 2025).
  40. Mamac, Monaliza Hernandez (2024). Linguistic complexity of public legal information texts for young persons. Text & Talk, 44(5), 623–648. DOI: 10.1515/text-2021-0187.
  41. Martínez, Gonzalo; Watson, Lauren; Reviriego, Pedro; Hernández, José Alberto; Juarez, Marc & Sarkar, Rik (2023). Towards Understanding the Interplay of Generative Artificial Intelligence and the Internet. arXiv.
  42. Matthiessen, Christian M. I. M.; Lam, Marvin & Teruya, Kazuhiro (2010). Key Terms in Systemic Func-tional Linguistics. Key Terms Series. Continuum. DOI: 10.5040/9781474211888.
  43. Morrow, Garrett; Swire‐Thompson, Briony; Polny, Jessica Montgomery; Kopec, Matthew & Wihbey, John P. (2022). The emerging science of content labeling: Contextualizing social media content moderation. Journal of the Association for Information Science and Technology, 73(10), 1365–1386. DOI: 10.1002/asi.24637.
  44. O’Brien, Sharon (2024). Human-centered augmented translation: Against antagonistic dualisms. Per-spectives, 32(3), 391–406. DOI: 10.1080/0907676X.2023.2247423.
  45. Pinker, Steven (1995). The Language Instinct (1st Ed.). HarperPerennial.
  46. Pinker, Steven (2015). The Sense of Style: The Thinking Person’s Guide to Writing in the 21st Century. Penguin Books.
  47. Preite, Chiara (2018). Stratégies dialogiques et transmission du savoir juridique dans le site du minis-tère de la justice française. Popularization and Knowledge Mediation in the Law: = Popularisierung Und Wissensvermittlung Im Recht, 9, 149–167.
  48. Rock, Frances (2007). Communicating Rights: The Language of Arrest and Detention. Palgrave Macmillan.
  49. Roffo, Giorgio (2024). Exploring advanced large language models with LLMsuite. Advance online publication. ArXiv. DOI: 10.48550/ARXIV.2407.12036.
  50. Speight, Jane; Skinner, T. C.; Dunning, T.; Black T.; Black, T.; Kilov, G.; Lee, C.; Scibilia, R. & Johnson, G. (2021). Our language matters: Improving communication with and about people with diabetes. A position statement by Diabetes Australia. Diabetes Research and Clinical Practice, 173, 108655. DOI: 10.1016/j.diabres.2021.108655.
  51. Svoboda, Tomáš (2013). Translation manuals and drafting style guides at the European Commission. Le Bulletin Du CRATIL Centre De Recherche De L’isit, 10, 80–106.
  52. Turnbull, Judith Anne (2018). Communicating and recontextualising legal advice online in English. CHE. Available at iris.unimore.it/handle/11380/1201050 (accessed 07 May 2025).
  53. van Leeuwen, Theo (1993). Language and Representation: The Recontextualisation of Participants, Activities and Reactions, PhD Thesis. University of Sydney: Sydney. Available at hdl.handle.net/2123/1615 (accessed 07 May 2025).
  54. Wittenberg, Chloe; Epstein, Ziv; Peloquin-Skulski, Gabrielle; Berinsky, Adam J. & Rand, David (2024). Labeling AI-Generated Media Online. Available at osf.io/b238p (accessed 07 May 2025).
  55. Zhang, Haochen; Dong, Yuyang; Xiao, Chuan & Oyamada, Masafumi (2024). Large Language Models as Data Preprocessors. arXiv.
  56. Zimina-Poirot, Maria (forthcoming). Computer-assisted language mediation in teaching human-centered augmented translation. Teaching Translation in the Age of Generative AI: New Paradigm, New Learning. Language Science Press.
  57. Zimina-Poirot, Maria & Gledhill, Christopher (2023). The evolutive nature of translation and teaching workflow: Textometric analysis of multiple revision cycles in a simulated website translation project. MediAzioni, A116‐A146. DOI: 10.6092/ISSN.1974-4382/18790.